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Abstract
During the culturing of cyanobacteria, heterotrophic bacteria can compete for nutrients, compromise the quality of the harvested
biomass, or cause culture crashes. We systematically investigated the effects of depleting inorganic phosphate (Pi) on the growth
of the cyanobacterium Synechocystis sp. PCC 6803, its community of heterotrophic bacteria, and the biomass’s chemical
composition. On the one hand, depleting Pi had minimal impact on total biomass, extracellular polymeric substances (ESP),
soluble microbial products (SMP), and most types of intracellular organic polymers production. On the other hand, depleting Pi
led to markedly less lipid content, less heterotrophic biomass, and a shift in the heterotrophic community from Burkholderiales to
Sphingobacteriales and Saprospirales. The causes of the large impacts were that Synechocystis was much better at scavenging a
very low Pi concentration and lowering the Pi available to the heterotrophs. This work lays a foundation for controlling the
accumulation of heterotrophs and reducing their deleterious effects in cyanobacteria culturing.
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Introduction

In a cyanobacteria-based photobioreactor (PBR),
cyanobacteria-generated soluble microbial products (SMPs)
and extracellular polymeric substances (EPSs) can become
sources of carbon and electrons for heterotrophic bacteria
(Nguyen and Rittmann 2016b; Zevin et al. 2015). SMPs are

direct electron-donor substrates for heterotrophic bacteria
(Laspidou and Rittmann 2002). As one of the important
SMP sources, EPS are indirect substrates for heterotrophic
bacteria. Decho et al. (2005) found that cyanobacterial EPS
was rapidly transformed post-secretion through heterotrophic
degradation, resulting in growth of heterotrophs, along with
the accumulation of refractory remnant polymers.

Heterotrophic bacteria in a PBR may influence the
growth of cyanobacteria, more often in negative ways.
Some heterotrophic bacteria can cause the lysis of
cyanobacterial cells through enzymatic or antibiotic action,
which is directly detrimental to biomass productivity
(Rashidan and Bird 2001; Zhang et al. 2018; Zhou et al.
2017a), others can consume valuable organic products ex-
creted by cyanobacteria (Zevin et al. 2015), and competi-
tion for nutrients may lower the growth rate and yield of
cyanobacteria (Straka and Rittmann 2017). Studying how
heterotrophic bacteria affected inorganic phosphorus (Pi)
stress to Synechocystis sp. PCC 6803, Straka and
Rittmann (2017) found that heterotrophic bacteria
contained about half of the culture’s inorganic phosphorus
(Pi), even though Synechocystis dominated the total bio-
mass. The sequestration of P by the heterotrophs led to a
roughly 50% decrease in Synechocystis production.
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Phosphorus is a key component of phospholipids, and the
availability of Pi affects the accumulation of lipids (Juneja
et al. 2013). For example, Pi starvation shifts lipid metabolism
from membrane lipid synthesis to neutral lipid storage and, in
turn, increases the total lipid content of green algae (Hu 2004;
Xin et al. 2010). Although cyanobacteria do not accumulate
neutral lipids, the loss of membrane lipids seems to be an
outcome of Pi depletion.

In this study, we used centrifugation- and thermal-based
methods to separate SMP, EPS, and intracellular polymeric
substances (IPSs) from biomass grown in batch cultures in
which Synechocystis sp. PCC 6803 was the photosynthetic
primary producer. Combining those measurements with mi-
crobial community analyses allowed us to observe how Pi
influenced the accumulation of lipids and differentially affect-
ed heterotrophs versus Synechocystis during batch growth.

Methods and materials

Synechocystis cultures and batch growth experimentsWild-
type Synechocystis sp. PCC 6803 (hereafter Synechocystis)
was maintained in 500-mL Erlenmeyer flasks with a working
volume of 300 mL and incident light intensity of ∼
80 μmol photons m−2 s−1, utilizing standard BG-11 (Rippka
et al. 1979), and bubbled with air filtered through a 1.0-μm air
filter (Pall, Port Washington, NY, USA). An aliquot from a
flask culture with the optical density (OD) of 3.4 after incu-
bated for 7-day was diluted to an OD of 0.6 ± 0.02 to initiate
each batch growth experiment.

The setup of the PBR used in the batch growth experiment is
shown in Fig. S1, and the culturing conditions in the batch
experiments were as follows: working volumes of 700 mL
using 1-L Erlenmeyer flasks; temperature of 30 ± 0.8 °C, main-
tained by 3 × 12-W automated-air fans (Minebea-Matsushita
Motor Corp., Japan) (Nguyen and Rittmann 2016a); incident
light intensity of 276 μmol photons m−2 s−1, maintained by T5
fluorescent plant-grow lamps (Envirogro Hydrofarm, USA);
pH of 8.0, maintained by a pH-Stat that initiated pure CO2

sparging when the pH rose above 8.01 (Nguyen and Rittmann
2015); and culture mixing by sparging continuously with hu-
midified air (bubbled through deionized water and filtered
through a 1.0-μm air filter (Pall, Port Washington, NY,
USA)). The starting alkalinity was augmented by adding
6.0 mM of bicarbonate (as NaHCO3). Baseline NO−

3 and

PO3−
4 concentrations were 8.6 mM (120 mg N/L) and

0.39 mM (12 mg P/L), consistent with the stoichometric ratio
of 22 mol N/mol P in standard BG-11 medium (Zhou et al.
2017c). The low-P condition had a starting P concentration to
0.055 mM (1.69 mgP/L, 3.1 mol N/mol P). All constituents
other than N, P, and alkalinity were the same as standard BG-
11. Prior to inoculation, the flasks and the BG-11 medium were

sterilized by autoclaving, and the pH probe was sterilized using
75% ethanol.

Extraction of extracellular and intracellular organic matter
f rom Synechocyst is As summarized in Fig. S2,
centrifugation- and thermal-based methods were used to sep-
arate SMP, EPS, and IPSs from the mixed culture (Zhou et al.
2016; Zhou et al. 2017c). A biomass sample was centrifuged
(Microfuge® 22RCentrifuge, Beckman Coulter, CA, USA) at
3600×g and 4 °C for 15 min, and the supernatant was further
centrifuged (same centrifuge) at 10800×g and 4 °C for 10 min
to further remove the particles. The final supernatant
contained SMP. The pellets from both centrifugations were
combined and resuspended to their original volumes using a
pH-8.4 borate buffer (Wang et al. 2017). These suspensions
were heated to 60 °C, held there for 20 min, and then centri-
fuged at 3600×g at 4 °C for 15 min (Zhou et al. 2016). The
supernatant was further centrifuged at 10,800×g at 4 °C for
10 min to remove particles, and this final supernatant
contained the EPS. The pellets from the EPS step were resus-
pended to their original volumes using the borate buffer, and
this suspension contained the IPS.

Fractionation of SMP and EPS into proteins and carbohy-
drates was carried out directly on these soluble materials.
Fractionation of IPS required additional steps. For intracellu-
lar protein and carbohydrate, we mixed 1 mL of 0.5 M H2SO4

with 9 mL of IPS sample in 15-mL polypropylene centrifuge
tubes (BD Falcon, VWR,USA). Themixture was subsequent-
ly shaken by hand and reacted for 4 h to dissolve the cell
membrane, and the whole mixture was used for the assay of
intracellular protein and carbohydrate. For intracellular chlo-
rophyll and carotenoids, we mixed a 1-mL slurry containing
569 ± 8.2 mg/L of freeze-dried biomass containing only IPS
(FreeZone Benchtop instrument (Labconco, MO, USA)) with
3 mL of Folch solvent (Chloroform/methanol = 2:1 v/v) in a
7.5-mL Pyrex disposable screw-cap culture tube (Gilbert-
López et al. 2015). The mixture was subsequently shaken at
3200 rpm and 23 °C for 5 h on the Vortex-Genie 2 and then
centrifuged at 3600×g and 23 °C for 10 min, and the super-
natant was used for the assay of intracellular chlorophyll and
carotenoid. For intracellular lipids, direct transesterification
(DT) was carried out with a 1-mL slurry sample of freeze-
dried biomass (FreeZone Benchtop instrument (Labconco,
MO, USA)). Samples were amended with 2 mL of 3 N meth-
anolic HCl (Sigma-Aldrich, MO, USA) and incubated at
85 °C in the oven for 2.5 h. The mixture was centrifuged at
3600×g and 23 °C for 10 min, and the supernatant was used
for the assay of intracellular lipid.

Analytical methods Sample OD730 was measured with a UV-
vis BioSpec-mini spectrometer at 730 nm (Shimadzu Corp.,
Japan). Dry weight (DW) was quantified using the total
suspended solids assay, Method 2540D in Standard Methods
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(Association 1998). We measured the protein present in SMP,
EPS, and IPS with a QuantiPro BCA Assay Kit (Sigma-
Aldrich, St. Louis, MO, USA) using bovine serum albumin
(BSA) as the standard (Frølund et al. 1996). The carbohydrate
content in SMP, EPS, and IPS was assayed with the phenol-
sulfuric acid method using glucose as the standard (Dubois
et al. 1956). The concentrations of chlorophyll and carotenoid
were measured with a spectrophotometer (Bio Cary 50 –
Varian, USA) based on the characteristic absorbances of the
pigments (Gilbert-López et al. 2015): 470 and 665 nm for
chlorophyll and carotenoid, respectively, and the standard
curves are shown in our previous work (Zhou et al. 2017b).
FAME components after direct transesterification were quan-
tified using a gas chromatograph (Shimadzu GC 2010, Japan)
equipped with a Supelco SP-2380 capillary column (30 m ×
0.25 mm × 0.20 μm) and flame ionization detector (FID)
(Sheng et al. 2011) against a 37-Component FAMEMix stan-
dard (Supelco, PA, USA).

Microbial community analyses: DNA extraction Pellets were
prepared from the reactors at the end of batch operation.
Approximately 0.30 g dry weight was used for DNA extrac-
tion with a PowerSoil DNA isolation kit (MoBio laboratories,
Inc., Carlsbad, CA). We assessed the quantity and quality of
extracted DNA by using a NanoDrop spectrophotometer
(ND1000, ThermoFisher, MA) at 260 and 280 nm (Ruiz
et al. 2014). The DNA concentrations and A260/A280 for
all samples were higher than 178.2 ng/μL and 1.87,
respectively.

Sequencing and bioinformatics analyses The DNA was sent
to the Microbiome Analysis Laboratory (http://krajmalnik.
environmentalbiotechnology.org/microbiome-lab.html) at
Arizona State University (AZ, USA) for bar-coded amplicon
sequencing. Triplicate PCR amplifications were performed for
each sample and targeted the V4 region of the 16S rRNA gene
with primer set 515f/806r (Caporaso et al. 2012). DNA sam-
ples were analyzed by a MiSeq Illumina sequencer and
Illumina chemistry version 2 (2 × 150 paired-end). Analysis
of the 16S rRNA gene sequences was performed using the
Quantitative Insights into Microbial Ecology software pack-
age (QIIME, version 1.9) (Caporaso et al. 2010). 16S rRNA
gene sequences were clustered into OTUs (operational taxon-
omy units) according to the Greengenes database using an
identity threshold of 97% by using the UCLUST algorithm
(Edgar 2010). Representative sequences for each OTU were
aligned with the Greengenes core reference alignment
(Caporaso et al. 2009) using PYNAST (DeSantis et al.
2006). The taxonomy of the OTU representative sequences
was classified by RDP CLASSIFIER v.2.2 (Wang et al.
2007). After alignment of the sequences, we constructed an
OTU table and removed singletons. Finally, the OTU table
was rarefied to the minimum number of sequences (34351)

obtained among the samples. Sample sequences were depos-
ited at the NCBI/Sequence Read Archive (SRA) under project
SRP136645 with accession numbers of SAMN08802819–
SAMN08802827, which were represented for the samples of
control, H2, H4, H6, H8, L2, L4, L6, and L8, respectively.
Control means the starting inoculum; H2–H8 and L2–L8 rep-
resent the samples after incubated for 2–8 days with the
starting P concentration to 0.39 and 0.055 mM, respectively.

Statistical analyses For the batch growth experiments, we took
triplicate samples from the reactor at the noted times, and each

sample was assayed one time for OD730, DW, NO−
3 , PO

3−
4 ,

SMP, EPS, IPS, protein, carbohydrate, chlorophyll, caroten-
oid, and lipids as FAME. Results are expressed as the mean
and standard deviation of the three measured samples (mean ±
SD).

Results

Biomass growth and nutrient utilization Figure 1 shows the

concentrations of biomass, NO−
3 -N, and PO3−

4 -P in the bulk
solution for the batch experiments having two initial Pi
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concentrations. Biomass concentration (reported as DW)
gradually increased, and NO−

3 -N decreased proportionally
throughout the batch growth experiment. The trends were
hardly affected by the starting Pi concentration, even though
Pi in the bulk solution was below detection by 4 h in the low-
Pi experiment, but was ≥ 1 mg P/L throughout the high-Pi
experiment. Thus, Synechocystis continued to grow well
whether or not Pi was available in the bulk solution. This trend
mirrors the results of Zhou et al. (2017c), showing that Pi was
rapidly adsorbed to EPS, which then became a source of Pi for
uptake and synthesis when bulk Pi was depleted. It also mir-
rors Straka and Rittmann (2017), who showed that
Synechocystis maintained its biomass-growth rate in the ab-
sence of detectable Pi, but the biomass had progressively low-
er P content.

Production of SMP and EPS Figure 2 shows the concentrations
of SMP, EPS, protein, and carbohydrate in SMP and EPS for
both batch experiments. SMP and EPS increased in parallel to
the growth of biomass (Fig. 1), but the dynamics differed,
especially for SMP. The concentration of EPS was higher than
SMP for the two starting Pi concentrations, but the gap
narrowed with increasing incubation time, since hydrolysis
of EPS is the major source of SMP (Laspidou and Rittmann
2002). Production of protein and carbohydrate mirrored the
increases of SMP and EPS. The carbohydrate fraction in SMP
was higher than protein, but the opposite occurred in EPS, a
trend that is consistent with previous studies (Ramesh et al.
2006; Zhou et al. 2017c) that showed that carbohydrates ac-
cumulated in SMP, while protein became predominant in EPS.

Because SMP are soluble and biodegradable, they are the
carbon sources and electron-donor substrates for the growth of
heterotrophic bacteria (Laspidou and Rittmann 2002).
Because Pi had minimal effect on the accumulation of SMP
and EPS, Pi did not influence the growth of heterotrophic
bacteria by altering the amount of electron-donor substrate
during the batch growth of Synechocystis.

Production of intracellular organic matter Figure 3 shows the
concentrations of total IPS and intracellular carbohydrate, pro-
tein, lipid (as FAME), chlorophyll, and carotenoid for the
batch experiments. Depletion of Pi made little difference for
the accumulation of total IPS or intracellular protein, carbo-
hydrate, chlorophyll, and carotenoid. However, depletion of
Pi had a strong impact on intracellular lipid, with the P-
depleted culture having increasingly less intracellular lipid.
Zhou et al. (2017c) proposed a set of transformation pathways
for phosphorus based on a complete phosphorus mass balance
during the growth of Synechocystis. They also found that a
low starting Pi concentration led to a low organic phosphorus
concentration in the extracellular and intracellular phosphorus
pools of Synechocystis. P is an essential component of phos-
pholipids and large amounts of organic phosphorus were

presented as lipids in Synechocystis (Juneja et al. 2013);
hence, a lack of available Pi led to the decrease of newly
synthesized lipids.

Influences of Pi on the succession of microbial community
Figure 4 shows the unweighted PCoA for the batch experi-
ments. One important trend is that samples from the reactor
with depleted Pi clustered with low values along the PC1 axis.
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A secondary trend is that Pi depletion led to a strong time-
dependent decline along the PC2 axis. In contrast, ample Pi
led to a strong time-related trend along the PC1 axis.

Figure 5 further shows the microbial community structure
for the batch experiments based on the unweighted UniFrac
analyses at the order level. The inoculum’s 16S rDNA
contained 56% Chroococcales, belonging to Cyanobacteria
and including Synechocystis. Chroococcales continued to be
the largest order, it gradually increased in the initial 2 days,
and low or high Pi made no difference. Important heterotro-
phic bacter ia were Sphingobacter ia les (~ 23%),
Flavobacteriales (~ 10%), and Rhizobiales (~ 7%).

For high Pi, Chroococcales gradually decreased after
2 days, while the 16S rDNA of heterotrophs gradually in-
creased, reaching as much as 44% of the 16S rDNA after
8 days for high Pi. Saprospirales and Burkholderiales gradu-
ally increased, up to ~ 17% and ~ 6%, respectively, at the end
of experiment.

For low Pi, Chroococcales slightly decreased after 2 days,
but then remained stable after Pi was depleted. In contrast to
the increase in heterotrophs for high Pi, the 16S rDNA of
heterotrophs remained at about 33% for low Pi. By using
fluorescence-activated cell sorting and microscopy, Zhou
et al. (2018) quantified the accumulation of heterotrophic
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bacteria during the growth of Synechocystis. They found that
the count proportions of heterotrophic bacteria were signifi-
cant (3–13%) and that depletion of Pi in the culture favored
Synechocystis over heterotrophic bacteria. Additionally,

deple t ion of Pi favored Sphingobacter iales and
Saprospirales but disfavored Burkholderiales, which might
be due to their different Pi affinities. Wu et al. (2013) found
that Betaproteobacteria, containing Burkholderiales, played a
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key role in phosphorus removal, and Pi depletion may have
led to the decrease of Burkholderiales for this reason. The
gradual increase of SMP and EPS over time in the batch ex-
periments favored Sphingobacteriales and Saprospirales,
which are known for their wide-ranging catabolic capacities
for diverse organic substrates (Whitman et al. 2016; Xia et al.
2017).

Discussion

Figure 6 synthesizes the mechanisms about how phosphate
depletion affects lipid content and accumulation of heterotro-
phic bacteria during growth of Synechocystis. Pi depletion
significantly affected the amount of heterotrophs and the
structure of the heterotrophic community (Figs. 4 and 5).
The impact on heterotrophs did not come from a change in
the concentration of their organic substrate, because depletion
of Pi had minimal impact on SMP and EPS accumulations
(Fig. 2). Instead, the effect on heterotrophs was due to
Synechocystis being capable of scavenging Pi at a very low
concentration (Straka and Rittmann 2017). Thus,
Synechocystis could out-complete the heterotrophs for limited
Pi, even though the heterotrophs had ample electron-donor
substrate in the form of SMP from Synechocystis. A second
competitive advantage for Synechocystis was its ability to
adapt to depleted Pi by lowering its lipid content by diverting
P away from phospholipid synthesis (Juneja et al. 2013).

Based on an average Synechocystis cell diameter of 2 μm
(Nguyen 2015), it has a biovolume of ~ 4.2 μm3, while the
typical bacteria found in the culture has a biovolume of
0.22 μm3 (Kuwae and Hosokawa 1999). Zhou et al. (2018)
reported that the count proportions of heterotrophic bacteria
were significant (3–13%) with the Pi concentration of 8.6 mM
(same value with this study). This indicates that the cell count
fraction of 3–13% for heterotrophic bacteria would represent
only 0.16–0.78% of the total biomass. Thus, depleting Pi had
minimal impact on the production of total biomass, which was
dominated by Synechocystis.

The fact that Pi depletion made little difference for the
production of total biomass, but lowered the relative numbers
of heterotrophs, suggests that reducing the Pi concentration in
the mediummay be a means for minimizing the accumulation
of heterotrophs and their deleterious effects in cyanobacteria
culturing. However, depleting Pi also led to lower accumula-
tion of lipids (Fig. 3), a negative consequence is some situa-
tions. Achieving the benefits of low Pi must be balanced with
the loss of lipids in situations in which lipids are a primary
output. For instance, it may be undesirable to have an extend-
ed period with fully depleted Pi.

By systematically investigating the effect of Pi on the
growth of biomass and microbial community, we found that
depleting Pi led to markedly less lipid content and

heterotrophic biomass, along with a shift in the heterotrophic
community from Burkholderiales to Sphingobacteriales and
Saprospirales. On the other hand, depleting Pi did not com-
promise the production of total biomass, ESP, SMP, and most
types of intracellular organic polymers. The causes of the large
impacts were that Synechocystis was much better at scaveng-
ing a very low Pi concentration and dominated the total
biomass.
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