Contents lists available at ScienceDirect



Science of the Total Environment



# Nitrate effects on perchlorate reduction in a $H_2/CO_2$ -based biofilm



Haixiang Li<sup>a,1</sup>, Lijie Zhou<sup>b,1</sup>, Hua Lin<sup>a</sup>, Wenjie Zhang<sup>a</sup>, Siqing Xia<sup>c,\*</sup>

<sup>a</sup> Guangxi Collaborative Innovation Center for Water Pollution Control and Water Safety in Karst Area, Guilin University of Technology, Guilin 541004, PR China

<sup>b</sup> College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, PR China

<sup>c</sup> State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China

## HIGHLIGHTS

# G R A P H I C A L A B S T R A C T

- Nitrate promotes perchlorate reduction at a  $NO_3^-$ -N/ClO $_4^-$  ratio lower than 5.
- Nitrate significantly inhibits perchlorate reduction at a NO<sub>3</sub><sup>-</sup>-N/ClO<sub>4</sub><sup>-</sup> ratio higher than 10.
- Denitrification competes more strongly for H<sub>2</sub> than perchlorate.
- High nitrate loadings significantly shape the biofilm microbial community.
- Methyloversatilis and Zoogloea likely play important roles in perchlorate reduction.



## A R T I C L E I N F O

Article history: Received 14 June 2019 Received in revised form 22 July 2019 Accepted 22 July 2019 Available online 23 July 2019

Editor: Huu Hao Ngo

*Keywords:* Perchlorate reduction Nitrate Microorganism H<sub>2</sub>/CO<sub>2</sub>-based membrane biofilm reactor

## ABSTRACT

The H<sub>2</sub>/CO<sub>2</sub>-based membrane biofilm reactor (H<sub>2</sub>/CO<sub>2</sub>-MBfR) that effectively combines microporous diffusions of H<sub>2</sub> and CO<sub>2</sub> is efficient in removing perchlorate (ClO<sub>4</sub><sup>-</sup>). Nitrate (NO<sub>3</sub><sup>-</sup>) is a common oxidized contaminant frequently coexists with ClO<sub>4</sub><sup>-</sup> in water, with the NO<sub>3</sub><sup>-</sup> concentration in most ClO<sub>4</sub><sup>-</sup>-contaminated waters being several orders of magnitude higher than ClO<sub>4</sub><sup>-</sup>. Determining the effect of NO<sub>3</sub><sup>-</sup> on ClO<sub>4</sub><sup>-</sup> reduction is a critical issue in practice. The ClO<sub>4</sub><sup>-</sup> reduction performance, biofilm microbial community and influencing mechanism were investigated under a series of feed NO<sub>3</sub><sup>-</sup> loadings in this work. ClO<sub>4</sub><sup>-</sup> reduction was slightly promoted when NO<sub>3</sub><sup>-</sup>-N levels were <10 mg/L and inhibited at higher NO<sub>3</sub><sup>-</sup>-N levels. Denitrification competed more strongly for H<sub>2</sub> than ClO<sub>4</sub><sup>-</sup> reduction, regardless of H<sub>2</sub> availability. A higher NO<sub>3</sub><sup>-</sup>-N loading was a strong driving force to change the biofilm microbial community. *Betaproteobacteria* were the dominant bacteria at all stages, and the biofilm reactor was enriched in *Methyloversatilis* and *Zoogloea* coincided with changes in the ClO<sub>4</sub><sup>-</sup> fluxes and removal efficiencies and the relative abundances of nitrogen cycle functional genes. These results suggest that *Methyloversatilis* and *Zoogloea* coincided with changes in the ClO<sub>4</sub><sup>-</sup> removal.

## 1. Introduction

\* Corresponding author.

*E-mail address: siqingxia@gmail.com* (S. Xia).

<sup>1</sup> Haixiang Li and Lijie Zhou contributed equally to this study.

Perchlorate  $(ClO_4^-)$  is an emerging and persistent toxic contaminant that is widely used in the industrial production of leather, solid rocket fuel, fireworks, and electroplating (Cao et al., 2019). The extensive use and intrinsic properties (e.g., high solubility and non-reactivity) of

 $ClO_4^-$  has resulted in its ubiquitous occurrence in receiving waters (Scheytt et al., 2011; Ye et al., 2012), leading to serious health issues such as abnormal metabolism, infant dysplasia, and thyroid cancer (Cartier et al., 2012). The US EPA has listed  $ClO_4^-$  as a priority pollutant and identified perchlorate as a drinking water contaminant (U.S. EPA, 2011). Therefore, robust approaches for the removal of  $ClO_4^-$  from water are urgently required to mitigate the environmental concerns associated with the utilization of this compound.

A considerable body of literature has extended our knowledge in terms of the microbiology, biochemistry, and genetics of microorganisms capable of reductively transforming  $ClO_4^-$  into chloride ( $Cl^-$ ) (Ye et al., 2012; Zhao et al., 2013; Hutchison et al., 2017). It is well-known that ClO<sub>4</sub><sup>-</sup> can be readily bioreduced to Cl<sup>-</sup> under anaerobic conditions. The hydrogen-based membrane biofilm reactor (MBfR) is a novel water treatment technology to reduce oxidized pollutants, such as nitrate  $NO_3^-$ ,  $ClO_4^-$ , selenite (Se $O_4^{2-}$ ), and Pd (II)) in water (Nerenberg and Martin, 2012; Zhao et al., 2013; Lai et al., 2014; Zhou et al., 2016; Li et al., 2018). It has major advantages of no secondary pollution, low biological yield, cost-effectiveness, high gas diffusion efficiency, and a small footprint (Nerenberg and Martin, 2012). In recent years, a simultaneous hydrogen and carbon dioxide diffusion membrane biofilm reactor (H<sub>2</sub>/CO<sub>2</sub>-MBfR) has been developed, which effectively integrates a microporous diffusion process for H<sub>2</sub>/CO<sub>2</sub> (Xia et al., 2015, 2016). In the system, the diffusion of CO<sub>2</sub> through micropores maximizes the utilization efficiency of CO<sub>2</sub> in the reactor, thereby effectively overcoming issues such as inorganic carbon source supply, sharp increases in pH, and mineral precipitation on the membrane surface (Xia et al., 2016).

NO<sub>3</sub><sup>-</sup> is a common oxidizing contaminant that frequently coexists with  $ClO_4^-$  in water because of the utilization of agricultural fertilizers (Wan et al., 2017; Sevdaa et al., 2018). The concentration of NO<sub>3</sub><sup>-</sup> in most ClO<sub>4</sub>-contaminated waters is often several orders of magnitude higher than that of  $ClO_4^-$  (Kimbrough and Parekh, 2007; Fabro et al., 2015).  $NO_3^-$  and  $ClO_4^-$  possess similar chemical properties and reduction potentials (ClO<sub>4</sub>/Cl<sup>-</sup> pair: 1.28 V and NO<sub>3</sub>/N<sub>2</sub> pair: 1.25 V) (Cecconet et al., 2018). As revealed in the literature, many isolated ClO<sub>4</sub><sup>-</sup> reducing bacteria play a role in denitrification, and some bacteria that are mostly involved in denitrification can also participate in the reduction of ClO<sub>4</sub> (Choi and Silverstein, 2008). Previous studies have shown that  $ClO_4^$ and  $NO_3^-$  can be simultaneously removed by  $ClO_4^-$ -degrading bacteria by the same  $NO_3^-$  reductase enzyme (Herman and Frankenberger, 1999; Logan and Lapoint, 2002). Moreover, bacteria involved in ClO<sub>4</sub> reduction and denitrifying bacteria have similar energy metabolisms. While  $NO_3^-$  influences  $ClO_4^-$  reduction,  $ClO_4^-$  also impacts denitrification (Herman and Frankenberger, 1999). In the studies about  $NO_3^-$  and  $ClO_4^$ reduction system, it was also found that pH change might induce biofilm to shit from nitrate to perchlorate reduction (Shea et al., 2008; Butler et al., 2010). Thus, these findings suggest that when  $ClO_4^-$  and NO<sub>3</sub><sup>-</sup> coexist, a significant interaction between denitrification and ClO<sub>4</sub><sup>-</sup> reduction occurs in the biofilm. Moreover, nitrite and nitrous oxide are the intermediate nitrogen forms of denitrification in MBfR, while nitrite has been related to carcinogenicity and nitrous oxide is a known greenhouse gas (Fan and Steinberg, 1996; Sabba et al., 2015). Consequently, the interaction between denitrification and ClO<sub>4</sub><sup>-</sup> reduction need to be considered in MBfR when  $ClO_4^-$  and  $NO_3^-$  coexist, in case the production of nitrite and nitrous oxide.

When bioreactor systems are used to remove  $ClO_4^-$ , it is important to avoid inhibition of  $ClO_4^-$  reduction by  $NO_3^-$ . However, no systematic and quantitative analyses have been conducted on the effect of  $NO_3^-$  on the reduction of  $ClO_4^-$ , and no consistent conclusions on the mechanisms responsible for the inhibitory or promoting effects of  $NO_3^-$  on  $ClO_4^-$  reduction have been obtained. For example, some studies suggest that high concentrations of  $NO_3^-$ -N (>10 mg/L) can inhibit the degradation of  $ClO_4^-$  (Herman and Frankenberger, 1999; Choi and Silverstein, 2008; London et al., 2011), while other studies report that low concentrations of  $NO_3^-$ -N (<5 mg/L) can promote the degradation of  $ClO_4^-$  (Xu et al., 2004; Tang et al., 2012a, 2012b; Zhu et al., 2016). While the effect of NO<sub>3</sub><sup>-</sup> on ClO<sub>4</sub><sup>-</sup> reduction in H<sub>2</sub> (Zhao et al., 2011; Tang et al., 2012a, 2012b) and organic electron donor (Zhu et al., 2016) bioreactors has been widely studied, the sharp increases in pH in the biofilm, which occur as a result of the reduction processes, remain unresolved, and have a negative impact on the assessment of ClO<sub>4</sub><sup>-</sup> reduction. The weak acidity of CO<sub>2</sub> can be used to control the pH in the biofilm while simultaneously serving as a carbon source for microbial growth. Additionally, few investigations have focused on the effect of NO<sub>3</sub><sup>-</sup> on ClO<sub>4</sub><sup>-</sup> reduction and the biofilm microbial community in H<sub>2</sub>/ CO<sub>2</sub>-MBfR systems. Thus, the first objective was to develop a benchscale H<sub>2</sub>/CO<sub>2</sub>-MBfR to investigate the effect of NO<sub>3</sub><sup>-</sup> concentration on the ClO<sub>4</sub><sup>-</sup> reduction performance. The second objective was to identify changes in the biofilm microbial community structure with NO<sub>3</sub><sup>-</sup> loading changes. Finally, the mechanisms responsible for the effect of NO<sub>3</sub><sup>-</sup> on ClO<sub>4</sub><sup>-</sup> reduction were analyzed.

#### 2. Materials and methods

#### 2.1. H<sub>2</sub>/CO<sub>2</sub>-MBfR setup

The H<sub>2</sub>/CO<sub>2</sub>-MBfR setup is shown in Fig. 1. A hollow fiber membrane module was fixed at both ends of the cylinder as a carrier for microbial growth. The hydrophobic hollow fibers were novel materials composed of polyvinyl chloride (PVC) manufactured by Litree Company (Suzhou, China), and the CO<sub>2</sub> microporous diffusion tube was also made of PVC. Pure H<sub>2</sub> diffuses from the membrane pore to the outside of the membrane without forming bubbles and is subsequently consumed by the microorganisms (biofilm) attached to the outer surface of the membranes as an electron donor. Pure CO<sub>2</sub> was delivered by the diffusion tube to the liquid and the biofilm attached to the hollow fibers. The physical characteristics of the H<sub>2</sub>/CO<sub>2</sub>-MBfR are listed in Table 1.

#### 2.2. Feed medium, H<sub>2</sub>/CO<sub>2</sub>-MBfR startup and continuous operation

The synthetic feed medium was prepared with different ClO<sub>4</sub><sup>-</sup> and NO<sub>3</sub><sup>-</sup>-N concentrations as previously described (Li et al., 2018). Detailed information is provided in Supplementary data. The H<sub>2</sub>/CO<sub>2</sub>-MBfR was inoculated with anaerobic activated sludge from a domestic sewage treatment plant (Guilin, Guangxi, China). The activated sludge was allowed to settle for 30 min, after which a 30 mL mixture at the solidliquid interface was inoculated into the reactor to culture the biofilm. After inoculation, the H<sub>2</sub>/CO<sub>2</sub>-MBfR was started when H<sub>2</sub> and CO<sub>2</sub> were added to the fibers at 0.01 MPa with an inflow rate of 0.5 mL/min. The pH of the medium was adjusted to ca. 7.2 by a PHS-3C type pH meter, while KH<sub>2</sub>PO<sub>4</sub> and Na<sub>2</sub>HPO<sub>4</sub> acted as a buffer media to maintain a nearly neutral pH of the liquid. During this period, no  $ClO_4^-$  was added to the influent, but 1 mg/L of NO<sub>3</sub><sup>-</sup>-N was already present in the influent as a nitrogen source. Once the effluent NO<sub>3</sub><sup>-</sup>-N concentrations were stabilized, the influent flow rate was increased to 2.0 mL/min. Once NO<sub>3</sub><sup>-</sup>-N was completely removed from the effluent, the outer surfaces of the membranes showed a layer of yellow-brown biomass. Once the biofilm was formed, H<sub>2</sub> and CO<sub>2</sub> were supplied to the fibers at 0.04 and 0.01 MPa, respectively. The influent contained varied amounts of  $ClO_4^-$  (150 and 200  $\mu g/L$ ), which were supplied continuously at 2.0 mL/min to enhance the biofilm enrichment. The effluent ClO<sub>4</sub><sup>-</sup> concentration reached a steady-state after about 80 days.

A series of long-term tests were conducted to evaluate the effects of  $NO_3^-$  on  $ClO_4^-$  degradation for 200 days (Table 2). In these experiments, the influent  $NO_3^-$ -N concentrations were set to 1, 5, 10, 20, and 50 mg/L in stages 1, 2, 3, 4, and 5, respectively. In addition, the H<sub>2</sub> pressure was fixed to 0.04 MPa, the CO<sub>2</sub> pressure was set to 0.01 MPa, pH was 7.2, the inflow velocity was 2.0 mL/min, and the influent  $ClO_4^-$  concentration was 2000 µg/L. On average, 40 days for each test condition was found to be sufficient for the system to reach a pseudo steady-state, and for the liquid concentration to achieve a stable state. During this 40-day period, the biomass did not change significantly (Xia et al.,



Fig. 1. Scheme of the bench-scale H<sub>2</sub>/CO<sub>2</sub>-MBfR used to investigate perchlorate reduction.

2011). During the last week of each stage, the concentrations of  $NO_3^-$ -N,  $ClO_4^-$ , and  $Cl^-$  in the effluent reached steady-state values. The effluent concentrations in the last week of each stage were calculated to evaluate changes in the flux as described in Section 2.5.

## 2.3. Routine analysis and flux calculations

All liquid samples were collected and analyzed by the methods described in the Supplementary data. The fluxes of  $NO_3^-$ -N and  $ClO_4^-$  in different steady stages were calculated using Eq. (1) to examine the effects of  $NO_3^-$  on  $ClO_4^-$  bioreduction. The normalization of the flux provided a simple measure of the intrinsic kinetics for given experimental conditions. This process was based on a pseudo first-order representation of the acceptor flux (*J*) in terms of the effluent acceptor concentration (*S*<sub>e</sub>), as depicted in Eq. (2) (Chung and Rittmann, 2007). To investigate the competitive capacities for H<sub>2</sub> of these electron acceptors, the electron-equivalent flux (*Eeq*) and the reaction order of the electron acceptor (*k*') were calculated according to Eqs. (3) and (4), respectively (Rittmann and McCarty, 2001).

$$J = \frac{Q \times (S_i - S_e)}{A} \tag{1}$$

| Table 1 |
|---------|
|---------|

Physical characteristics of the H<sub>2</sub>/CO<sub>2</sub>-MBfR system.

| Physical characteristics                             | Units          | Value |
|------------------------------------------------------|----------------|-------|
| Reactor height                                       | cm             | 64    |
| Reactor inner diameter                               | mm             | 6     |
| Reactor available volume                             | L              | 1.8   |
| Inflow velocity                                      | mL/min         | 2     |
| Reflux velocity                                      | mL/min         | 20    |
| Hydraulic residence time (HRT)                       | h              | 15    |
| Number of hollow fibers                              | bunch          | 120   |
| Membrane active length                               | cm             | 50    |
| Membrane inner diameter                              | mm             | 1     |
| Membrane outer diameter                              | mm             | 1.5   |
| Membrane pore size                                   | μm             | 0.02  |
| Membrane active surface area                         | m <sup>2</sup> | 0.28  |
| CO <sub>2</sub> microporous diffusion tube pore size | μm             | 10    |

$$k = \frac{J}{S_e} \tag{2}$$

$$Eeq = \frac{J}{EW_s} = \frac{Q \times (S_i - S_e)}{A \times EW_s}$$
(3)

$$k' = \frac{d(\lg J)}{d(\lg S_e)} \tag{4}$$

where  $S_i$  and  $S_e$  are the influent and effluent NO<sub>3</sub><sup>-</sup>-N or ClO<sub>4</sub><sup>-</sup> concentrations (g/m<sup>3</sup>), respectively; *J* is the acceptor removal flux in the biofilm (g/m<sup>2</sup>·d); *Q* is the flow rate of the influent (m<sup>3</sup>/d); *A* is the biofilm surface area (m<sup>2</sup>); *k* is the intrinsic lumped rate coefficient indicating the normalized flux (m/d); *Eeq* is electron-equivalent flux (eq/m<sup>2</sup>·d); and EW<sub>s</sub> is the g/e<sup>-</sup> equivalent required for the complete reduction of the electron acceptor (2.8 g/e<sup>-</sup> for NO<sub>3</sub><sup>-</sup>-N to be reduced to N<sub>2</sub>, and 12.4 g/e<sup>-</sup> for ClO<sub>4</sub><sup>-</sup> to be reduced to Cl<sup>-</sup>).

The actual H<sub>2</sub> consumption fluxes were calculated ( $J_{H_2} = J_{NO_3} \times 3.03 \times 2/14 + J_{CIO_4} \times 5.48 \times 2/99.5$ ) from the removal fluxes of the oxidized compounds and the reaction stoichiometry shown in Eqs. (5) and (6). The delivery capacity of the PVC hollow fibers (maximum H<sub>2</sub> diffusion flux) was assessed as previously reported (Tang et al., 2012a, 2012b; Xia et al., 2015). A maximum H<sub>2</sub> diffusion flux of 0.246 g H<sub>2</sub>/m<sup>2</sup> · d was obtained for the applied H<sub>2</sub> pressure of 0.04 MPa (Table 3). To determine whether the H<sub>2</sub> delivery was limiting, the actual H<sub>2</sub> flux was

 Table 2

 Series of long-term test conditions investigating nitrate effects on perchlorate degradation.

| Stages | Periods<br>(days) | Influent<br>NO <sub>3</sub> <sup></sup> N<br>(mg/L) | H <sub>2</sub><br>pressure<br>(MPa) | CO <sub>2</sub><br>pressure<br>(MPa) | Inflow<br>velocity<br>(mL/min) | рН  | Influent<br>ClO <sub>4</sub><br>(µg/L) |
|--------|-------------------|-----------------------------------------------------|-------------------------------------|--------------------------------------|--------------------------------|-----|----------------------------------------|
| 1      | 1-40              | 1                                                   |                                     |                                      |                                |     |                                        |
| 2      | 41-80             | 5                                                   |                                     |                                      |                                |     |                                        |
| 3      | 81-120            | 10                                                  | 0.04                                | 0.01                                 | 2.0                            | 7.2 | 2000                                   |
| 4      | 121-160           | 20                                                  |                                     |                                      |                                |     |                                        |
| 5      | 161-200           | 50                                                  |                                     |                                      |                                |     |                                        |

| Table 3 |
|---------|
|---------|

Summary of the electron-equivalent fluxes and H<sub>2</sub> fluxes at steady states in long-term experiments.

| Stages | Electron-e<br>(eq/m <sup>2</sup> ·d) | n-equivalent fluxes Distribution of Actual $H_2$ consumption fluxes (g<br>$^2 \cdot d$ ) electron-equivalent $H_2/m^2 \cdot d$ )<br>fluxes |        |           |                                 | Actual $H_2$ consumption fluxes (g $H_2/m^2 \cdot d)$ |          | Maximum $H_2$ diffusion flux (g $H_2/m^2\!\cdot\!d)$ |       |
|--------|--------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------|--------|-----------|---------------------------------|-------------------------------------------------------|----------|------------------------------------------------------|-------|
|        | $ClO_4^-$                            | $NO_3^N$                                                                                                                                   | total  | $ClO_4^-$ | NO <sub>3</sub> <sup>-</sup> -N | $ClO_4^-$                                             | $NO_3^N$ | total                                                |       |
| 1      | 0.0017                               | 0.0038                                                                                                                                     | 0.0055 | 30.3%     | 69.7%                           | 0.0145                                                | 0.0046   | 0.0191                                               | 0.246 |
| 2      | 0.0017                               | 0.0191                                                                                                                                     | 0.0208 | 8.0%      | 92.0%                           | 0.0147                                                | 0.0231   | 0.0378                                               | 0.246 |
| 3      | 0.0017                               | 0.0381                                                                                                                                     | 0.0398 | 4.2%      | 95.8%                           | 0.0146                                                | 0.0461   | 0.0607                                               | 0.246 |
| 4      | 0.0015                               | 0.0748                                                                                                                                     | 0.0763 | 2.0%      | 98.0%                           | 0.0121                                                | 0.0907   | 0.1028                                               | 0.246 |
| 5      | 0.0011                               | 0.1820                                                                                                                                     | 0.1831 | 0.6%      | 99.4%                           | 0.0094                                                | 0.2117   | 0.2211                                               | 0.246 |

compared to the maximum H<sub>2</sub> diffusion flux at the applied H<sub>2</sub> pressure.

$$\begin{array}{l} \text{NO}_3{}^- + 3.03\text{H}_2 + 0.23\text{CO}_2 + \text{H}^+ = 0.48\text{N}_2 + 0.046\text{C}_5\text{H}_7\text{O}_2\text{N} \\ &\quad + 3.37\text{H}_2\text{O} \end{array} \tag{5}$$

$$\begin{array}{l} ClO_4^- + 5.48H_2 + 0.11H^+ + 0.11NO_3^- + 0.53CO_2 \\ = Cl^- + 5.15H_2O + 0.11C_5H_7O_2N \end{array} (6)$$

## 2.4. Biofilm sampling, high-throughput sequencing and analysis

Biofilm samples were collected for all stages when the performance of the reactors was at a steady state as revealed by stable concentrations of  $NO_3^--N$ ,  $ClO_4^-$ , and  $Cl^-$  in the effluent. For each collection, three hollow fibers (10 cm in length) were cut into short pieces (ca. 1 cm) from different locations on the membrane module, and separated by ultrasonic treatment (SK3300-35 KHz, China). The biofilm samples were washed with TENP buffer and re-suspended with sodium phosphate buffer before DNA extraction.

The microbial community was analyzed by 16S rRNA gene cloning and amplicon pyrosequencing. Bacterial 16S rRNA gene fragments were PCR amplified using primers 341F and 805R. The PCR reaction system contained 15  $\mu$ L 2 × Taq master Mix, 1  $\mu$ L Primer F (10  $\mu$ M), 1  $\mu$ L Primer R (10  $\mu$ M), 20 ng Genomic DNA, and 30  $\mu$ L of ddH<sub>2</sub>O. The PCR reaction conditions were as follows: 94 °C for 3 min; five cycles at 94 °C for 30 s, 45 °C for 20 s, and at 65 °C for 30 s; 20 cycles at 94 °C for 20 s, 55 °C for 20 s, and at 72 °C for 30 s; and then a final extension at 72 °C for 5 min. Amplicon pyrosequencing was conducted by Sangon Biotech (Shanghai) Co., Ltd. (Shanghai, China), using an Illumina Miseq<sup>TM</sup> sequencing system (Illumina, USA). Detailed information on sequencing analysis is provided in Supplementary data.

#### 3. Results and discussion

#### 3.1. Biofilm performance for $NO_3^-$ and $ClO_4^-$ reductions

The operation of the H<sub>2</sub>/CO<sub>2</sub>-MBfR started to grow the biofilm and reduce ClO<sub>4</sub><sup>-</sup> (Fig. S1). After 80 days of biofilm enrichment, the influent NO<sub>3</sub><sup>-</sup>-N concentrations were set to 1, 5, 10, 20, and 50 mg/L, with a H<sub>2</sub>/CO<sub>2</sub> pressure of 0.04/0.01 MPa and an influent ClO<sub>4</sub><sup>-</sup> concentration of 2000 µg/L. Fig. 2(a) shows concentrations of ClO<sub>4</sub><sup>-</sup>, NO<sub>3</sub><sup>-</sup>-N, and transformed Cl<sup>-</sup> in the effluent along with concentrations of ClO<sub>4</sub><sup>-</sup> and NO<sub>3</sub><sup>-</sup>-N removal percentages and Cl<sup>-</sup> transformation percentages during the five stages.

In stage 1, strong  $ClO_4^-$  reduction started 3 days after adding  $ClO_4^-$  to the influent. The effluent  $ClO_4^-$  concentration reached 931 µg/L (55.4% removal of  $ClO_4^-$ ) accompanying by an increase in the effluent  $Cl^-$  concentration. At the last five days of stage 1, 97% of the  $ClO_4^-$  and nearly 100% of the NO<sub>3</sub><sup>-</sup>-N were reduced. In stage 2,  $ClO_4^-$  reduction was slightly enhanced from day 55 (the  $ClO_4^-$  removal approached 99%, as did the NO<sub>3</sub><sup>-</sup>-N removal). In stage 3 (days 113–120), 98% of the  $ClO_4^-$  was removed with 30%  $Cl^-$  conversion. In stage 4, the influent NO<sub>3</sub><sup>-</sup>-N concentration increased to 20 mg/L and the extent of the  $ClO_4^-$  reduction declined dramatically within 3 days (68% removal of  $ClO_4^-$  and

the Cl<sup>-</sup> conversion reached 12%). After approximately 36 days of operation in stage 4,  $ClO_4^-$  reduction increased again to ca. 81% (days 156-160). In stage 5, 50 mg/L of NO<sub>3</sub><sup>-</sup>-N significantly inhibited ClO<sub>4</sub><sup>-</sup> reduction, and the effluent  $ClO_4^-$  concentration increased to 736 µg/L (63% removal of  $ClO_4^-$ ), corresponding to a 19.6%  $Cl^-$  conversion. NO<sub>3</sub><sup>-</sup>-N was simultaneously reduced at 90% to concentrations lower than 5 mg/L. In addition, nitrite, nitric oxide, nitrous oxide are the known intermediate nitrogen forms in the denitrification process (Puig et al., 2011; Sabba et al., 2017; Cecconet et al., 2019). In previous study, denitrification with H<sub>2</sub> and CO<sub>2</sub> had a complete denitrification without intermediate nitrogen compounds accumulation under low nitrate (<100 mg/L) influent (Vasiliadou et al., 2006). Furthermore, other study (Lee and Rittmann, 2003) and our group studies (Xia et al., 2009; Zhang et al., 2009) found that denitrification with high pH (>9.2) would start to show the incomplete process with nitrite accumulation, but complete denitrification would achieved at low pH (ca. 7-8.5). Consequently, MBfR operated with low nitrate influent and low pH should have a complete denitrification process without intermediate nitrogen compounds accumulation.

## 3.2. Effect of nitrate on the $ClO_4^-$ reduction process

Fig. 3 summarizes the effluent concentrations of  $ClO_4^-$  and  $Cl^-$ , the removal efficiencies of ClO<sub>4</sub><sup>-</sup> and NO<sub>3</sub><sup>-</sup>-N, and the fluxes and normalized fluxes of ClO<sub>4</sub><sup>-</sup> and NO<sub>3</sub><sup>-</sup>-N. As the influent NO<sub>3</sub><sup>-</sup>-N concentration increased from 1 to 5 mg/L, the effluent ClO<sub>4</sub><sup>-</sup> concentration declined from 57 to 16 µg/L, and the ClO<sub>4</sub><sup>-</sup> removal increased from 97% to 99%. Increasing the influent  $NO_3^-$ -N concentration to 10 mg/L resulted in a slight increase of the effluent  $ClO_4^-$  concentration (34 µg/L). However, the ClO<sub>4</sub><sup>-</sup> reduction process was enhanced due to the NO<sub>3</sub><sup>-</sup>-N addition, and higher removal and Cl<sup>-</sup> conversion values were observed compared to values in stage 1. When 20 mg/L (stage 4) and 50 mg/L (stage 5) of  $NO_3^-$ -N were introduced to the influent, the  $ClO_4^-$  removal sharply decreased to 81% and 63%, respectively, and the Cl<sup>-</sup> conversion declined below 22%. These results clearly indicate that increasing the  $NO_3^-$ -N loading moderately (<10 mg N/L or a ratio of  $NO_3^-$ -N to  $ClO_4^-$ <5) promotes ClO<sub>4</sub><sup>-</sup> reduction. In contrast, NO<sub>3</sub><sup>-</sup> significantly inhibited ClO<sub>4</sub><sup>-</sup> reduction at higher NO<sub>3</sub><sup>-</sup>-N loadings (>20 mg N/L or a ratio of  $NO_3^-$ -N to  $ClO_4^- > 10$ ). Thus, the promotion or inhibition of denitrification on the  $ClO_4^-$  reduction process was controlled by the gradient of NO<sub>3</sub><sup>--</sup>-N loading. Similar results were obtained during the simultaneous removal of NO<sub>3</sub><sup>-</sup> and ClO<sub>4</sub><sup>-</sup> (Van Ginkel et al., 2008; Zhao et al., 2011; Tang et al., 2012a, 2012b; Zhu et al., 2016). Interestingly, the effect of NO<sub>3</sub><sup>-</sup> on the bromate (BrO<sub>3</sub><sup>-</sup>) reduction reported by previous study revealed a similar tendency (Downing and Nerenberg, 2007). Specifically, these authors found that low concentrations of NO<sub>3</sub><sup>-</sup> provided the energy required for bromate-reducing bacteria to grow, while concentrations of NO<sub>3</sub><sup>-</sup>-N higher than 5 mg/L significantly inhibited BrO<sub>3</sub><sup>-</sup> reduction.

From stage 1 to stage 5, the  $ClO_4^-$  flux declined from 0.0203 to 0.0132 g/m<sup>2</sup>·d, whereas the normalized  $ClO_4^-$  flux increased from 0.3555 to 1.2512 m/d and then decreased to 0.0180 m/d. The denitrification flux gradually increased from 0.0107 to 0.4892 g/m<sup>2</sup>·d, although the normalized NO<sub>3</sub><sup>-</sup>-N flux declined from 1.0716 to 0.1013 m/d. Unlike



Fig. 2. Effluent concentrations of ClO<sub>4</sub><sup>-</sup>, Cl<sup>-</sup> and NO<sub>3</sub><sup>-</sup>-N (a), and ClO<sub>4</sub><sup>-</sup> and NO<sub>3</sub><sup>-</sup>-N removal and Cl<sup>-</sup> transformation percentages (b) during the five stages.

the ClO<sub>4</sub><sup>-</sup> and NO<sub>3</sub><sup>-</sup>-N fluxes that experienced minor changes, the normalized ClO<sub>4</sub><sup>-</sup> and NO<sub>3</sub><sup>-</sup>-N fluxes changed dramatically (Fig. 3). These results imply that ClO<sub>4</sub><sup>-</sup> reduction was strongly affected by denitrification. ClO<sub>4</sub><sup>-</sup> reduction rates were also reported to decrease as denitrification activity increased in some reactors (Zhao et al., 2011; Nerenberg and Rittmann, 2004). NO<sub>3</sub><sup>-</sup>, as a primary electron acceptor, may outcompete ClO<sub>4</sub><sup>-</sup> for limited H<sub>2</sub> availability in mixed-culture reactors, and competition for H<sub>2</sub> by denitrification may inhibit ClO<sub>4</sub><sup>-</sup> reduction.

## 3.3. Analysis of the competition for H<sub>2</sub> availability

The electron-equivalent fluxes and H<sub>2</sub> fluxes of ClO<sub>4</sub><sup>-</sup> and NO<sub>3</sub><sup>-</sup>-N at steady states during long-term experiments are summarized in Table 3. By comparing the actual H<sub>2</sub> consumption fluxes with the maximum H<sub>2</sub> diffusion flux (0.246 g of H<sub>2</sub>/m<sup>2</sup>·d), we observe that stages 1, 2, 3, and 4 had sufficient H<sub>2</sub> delivery and were therefore not limited by the electron donor. In contrast, stage 5 was H<sub>2</sub>-limited because the actual H<sub>2</sub> flux (0.2211 g of H<sub>2</sub>/m<sup>2</sup>·d) was very close to the maximum H<sub>2</sub> flux. The high total H<sub>2</sub> flux and incomplete NO<sub>3</sub><sup>-</sup> and ClO<sub>4</sub><sup>-</sup> reduction processes clearly reveal that the biofilm was limited by H<sub>2</sub> delivery in stage 5.

Denitrification was the largest consumer of electrons (69.7–99.4%), and  $ClO_4^-$  reduction accounted for a small percentage of the electron fluxes (0.6–30.3%). These findings indicate that the total demand for H<sub>2</sub> was largely controlled by denitrification, which explains why the higher NO<sub>3</sub><sup>-</sup>-N loading only slightly changed the  $ClO_4^-$  fluxes and electron-equivalent fluxes. The electron-equivalent flux of  $ClO_4^-$  was negatively affected by low H<sub>2</sub> availability (especially in stage 5), along with a 0.6% percentage of  $ClO_4^-$  in total electron-equivalent fluxes. These results demonstrate that denitrification mainly used electrons from H<sub>2</sub> oxidation, regardless of the H<sub>2</sub> availability in the biofilm.

The biofilm reaction order (k') was calculated to investigate the sensitivity of the NO<sub>3</sub><sup>-</sup> and ClO<sub>4</sub><sup>-</sup> reduction process towards the H<sub>2</sub> competition and quantitatively describes the effects of NO<sub>3</sub><sup>-</sup> on the ClO<sub>4</sub><sup>-</sup> reduction. As shown in Fig. 4, the reaction orders of NO<sub>3</sub><sup>-</sup> and ClO<sub>4</sub><sup>-</sup> were 0.6083 and -0.1098, respectively, while the NO<sub>3</sub><sup>-</sup> -N concentration in the influent increased from 1 to 50 mg/L. These findings clearly suggest that denitrification competed more strongly for H<sub>2</sub> than ClO<sub>4</sub><sup>-</sup> reduction. In other words, denitrification is more sensitive to changes in H<sub>2</sub> availability produced by high influent NO<sub>3</sub><sup>-</sup> -N loadings as compared to the ClO<sub>4</sub><sup>-</sup> reduction. These results are consistent with the observed inhibition on ClO<sub>4</sub><sup>-</sup> reduction when high NO<sub>3</sub><sup>-</sup> -N loadings were used (Figs. 2 and 3).

## 3.4. Analysis of the biofilm microbial community

Fig. 5(a) shows the taxonomic breakdown (at the class level) of all the biofilm sample communities at stages 1–5. *Betaproteobacteria* were the dominant bacteria, accounting for 69.9, 76.5, 87.1, 79.9, and 62.3%, respectively. When  $NO_3^-$  was added to the influent in stages 2–5, the abundance of *Betaproteobacteria* reached a maximum relative



**Fig. 3.** Effect of the influent  $NO_3^-$ -N concentration on  $ClO_4^-$  bioreduction: (a) influent  $ClO_4^-$  concentration,  $ClO_4^-$  and  $Cl^-$  concentrations in the effluent and  $ClO_4^-$  removal efficiency; (b) effluent  $NO_3^-$ -N concentration and removal efficiency; (c)  $ClO_4^-$  and  $NO_3^-$ -N fluxes,  $ClO_4^-$  and  $NO_3^-$ -N fluxes normalized to the effluent  $ClO_4^-$  and  $NO_3^-$ -N concentrations.

abundance of 87.1% and decreased thereafter. These values corresponded to variations in the  $ClO_4^-$  flux (Fig. 3). *Betaproteobacteria* have been widely reported to act as perchlorate reducers and denitrifiers and prevailed the biofilms during the simultaneous NO<sub>3</sub><sup>-</sup> and  $ClO_4^-$  reduction processes (Zhao et al., 2011; Logan, 2001; Zhu et al., 2016). The abundance of *Alphaproteobacteria* increased from 3.8 to 20.8%, while the abundance of *Gammaproteobacteria* decreased from 11.1 to 5.1% with decreasing electron donors. The bacteria with the most powerful chlorate reducing activity was *Gammaproteobacteria* (Roldan et al., 1994), which led to incomplete  $ClO_4^-$  reduction in stages 4 and 5. The total abundance of *Proteobacteria* showed a similar trend to that of *Betaproteobacteria*. The community structure of the biofilm changed significantly as the influent NO<sub>3</sub><sup>-</sup>-N concentration increased.

Fig. 5(b) shows the relative proportions of the most abundant bacterial genera during the different stages. The genera Methyloversatilis (Betaproteobacteria), Zoogloea (Betaproteobacteria), Citrobacter (Gammaproteobacteria). Limnohabitans (Betaproteobacteria). Acinetobacter (Gammaproteobacteria), Pseudomonas (Gammaproteobacteria), Hydrogenophaga (Betaproteobacteria), Dechloromonas (Betaproteobacteria), and Azospira (Betaproteobacteria) were present in all stages. The genera Methyloversatilis, Zoogloea, and Hydrogenophaga were strongly enriched in the five stages, accounting for 31.9-56.5%, 10.6-25.8%, and 0.3-1.9%, respectively. The amounts of Methyloversatilis, Zoogloea, and Hydrogenophaga reached a maximum with the NO<sub>3</sub><sup>-</sup>-N concentration and decreased thereafter. Methyloversatilis, Zoogloea, and Hydrogenophaga have been widely reported as relevant denitrification bacteria (Zhang et al., 2009; Li et al., 2010; Sun et al., 2016; Li et al., 2018), while other researchers have found that Methyloversatilis and Zoogloea became dominant in autotrophic  $NO_3^-/CIO_4^-$  reducing reactors (Gao et al., 2015, 2016). Although the ability of *Methyloversatilis* and *Zoogloea* to reduce ClO<sub>4</sub><sup>-</sup> was not clear, the reduction activity of these bacteria cannot be ruled out. Provided that *Methyloversatilis* and *Zoogloea* can utilize ClO<sub>4</sub><sup>-</sup> as an electron acceptor, then the elevated relative abundance of Methyloversatilis and Zoogloea could account for the improved  $ClO_4^-$  removal in the H<sub>2</sub>/CO<sub>2</sub>-MBfR. In this study, changes in the amounts of Methyloversatilis and Zoogloea were consistent with changes in the ClO<sub>4</sub><sup>-</sup> flux and removal efficiency. Thus, we suggest that Methyloversatilis and Zoogloea play an important role in  $ClO_4^-$  reduction. The genera *Citrobacter* (1.9–5.8%), Limnohabitans (3.4–4.3%), Acinetobacter (0.9–2.8%), Pseudomonas



Fig. 4. Logarithm of: (a)  $ClO_4^-$  flux and (b)  $NO_3^-$ -N flux plotted against the logarithm of the effluent  $ClO_4^-$  and  $NO_3^-$ -N concentration.

H. Li et al. / Science of the Total Environment 694 (2019) 133564



Fig. 5. Relative abundances of high-throughput sequences from biofilms at the class (a) and genus (b) levels for all five steady states.

(0.8-2.0%), *Dechloromonas* (0.1-0.3%), and *Azospira* (0.1-0.2%) use both NO<sub>3</sub><sup>-</sup> and ClO<sub>4</sub><sup>-</sup> as electron acceptors (Okeke et al., 2002; Coates and Achenbach, 2004; Guan et al., 2015). These bacteria were detected in all stages. However, their total proportions decreased sharply from 11.1 to 3.9%, and then slightly increased to 4.8% as the actual H<sub>2</sub> flux increased from 0.0191 to 0.2211 g H<sub>2</sub>/m<sup>2</sup> · d. This trend is opposite to that found for *Methyloversatilis, Zoogloea*, and *Hydrogenophaga*. Moreover, as the electron donors decreased, the H<sub>2</sub>/CO<sub>2</sub>-MBfR appeared to become more mixotrophic in stages 4 and 5, when heterotrophs became more selective as H<sub>2</sub> was more limited (especially in stage 5). Therefore, the addition of NO<sub>3</sub><sup>-</sup> promoted the growth of perchlorate reducers, but insufficient or limiting levels of H<sub>2</sub> inhibited the development of bacteria involved in ClO<sub>4</sub><sup>-</sup> reduction.

The variations of function genes at different stages were analyzed by high-throughput sequencing and KEGG annotation (Fig. 6). The analysis of functional genes in biofilms capable of degrading xenobiotics (pollutants) showed that the relative abundance of genes involved in the nitrogen cycle was 1.02–1.14% while that of the genes involved in the chlorine cycle was 0.77–0.91% (Fig. 7). The relative abundance of genes involved in the nitrogen cycle was close to that of genes involved in degrading chlorinated substances. It was speculated that the bacteria involved in the nitrogen and chlorine cycles jointly achieved the reductive degradation of  $ClO_4^-$ . Although the analysis of functional genes by KEGG annotation has some limitations, these results demonstrated that the degradation of  $ClO_4^-$  under complex conditions was carried out by a combination of various bacteria. Moreover, the biofilm community structure changed as a result of the addition of  $NO_3^-$ , ultimately becoming a suitable system for  $ClO_4^-$  degradation.

Fig. 8 shows the weighted PCoA based on the increased influent  $NO_3^-$ -N concentration. Biofilm samples for stages 1–4 were grouped together and showed much higher PCoA1 values compared to stage 5. Clustering tree plot based on OTUs and values of Chao1, ACE, Shannon, and Simpson indexes also support this trend (Fig. S2 and Table S1). Thus, the higher influent loading of  $NO_3^-$ -N (50 mg N/L) had a great impact on shaping the microbial communities of the biofilms, which may have inhibited  $ClO_4^-$  reduction. The community shifts shown by PCoA are related to the limitation of H<sub>2</sub> (i.e., insufficient electron donor) in the biofilm (Table 3). Moreover, the clear distinction of the PCoA2 vector between samples in stage 1 and stages 2–5 suggests that the microbial structure was also related to the addition of  $NO_3^-$ -N to the flow. The feed composition and H<sub>2</sub> supply have been previously reported to promote shifts in the microbial community populations (Zhou et al.,



Fig. 6. Relative abundance of functional genes based on KEGG annotation.

2014; Ontiveros-Valencia et al., 2017). This study suggests that insufficient  $H_2$  caused by higher  $NO_3^-$ -N loading affected the community structure more significantly than the presence of  $NO_3^-$ -N.



Fig. 7. Nitrogen cycle (a) and chlorine cycle (b) function genes by relative abundance in different.

#### 3.5. Analysis of the mechanisms of $NO_3^-$ influencing on $CIO_4^-$ reduction

The results of this study showed that NO<sub>3</sub><sup>-</sup> can promote ClO<sub>4</sub><sup>-</sup> reduction at lower NO<sub>3</sub><sup>-</sup>-N loading levels, as well as inhibit ClO<sub>4</sub><sup>-</sup> reduction at higher NO<sub>3</sub><sup>-</sup>-N loading levels (>20 mg N/L or a ratio of NO<sub>3</sub><sup>-</sup>-N to ClO<sub>4</sub><sup>-</sup> >10). Several ClO<sub>4</sub><sup>-</sup> reductions taking place in the presence of NO<sub>3</sub><sup>-</sup> were previously attributed to NO<sub>3</sub><sup>-</sup> supporting high growth rates of ClO<sub>4</sub><sup>-</sup> reducers (Xu et al., 2004). Thus, enhanced ClO<sub>4</sub><sup>-</sup> reduction rates can also be expected from cells grown in the presence of NO<sub>3</sub><sup>-</sup>. This observation may be explained by two mechanisms: (1) a single ClO<sub>4</sub><sup>-</sup> reducer can simultaneously catalyze the reduction of both ClO<sub>4</sub><sup>-</sup> and NO<sub>3</sub><sup>-</sup>; and (2) a single organism containing both ClO<sub>4</sub><sup>-</sup> and NO<sub>3</sub><sup>-</sup> reductases at different locations. The former is a co-metabolic mechanism for denitrification and ClO<sub>4</sub><sup>-</sup> reduction, while the latter is an independent reduction mechanism for ClO<sub>4</sub><sup>-</sup> reduction. As shown in Figs. 3, 5 and 7, the changes in the amount of *Methyloversatilis* and *Zoogloea* 



Fig. 8. PCoA based on weighted UniFrac analysis showing the microbial community grouping.

were consistent with changes in  $ClO_4^-$  fluxes and removal efficiencies, as well as with changes in the relative abundances of nitrogen cycle function genes. Thus, we speculate that *Methyloversatilis* and *Zoogloea* possess independent mechanisms capable of  $ClO_4^-$  reduction. The genera *Citrobacter, Acinetobacter, Pseudomonas, Dechloromonas,* and *Azospira* can co-metabolize both components. Moreover, an independent mechanism for  $ClO_4^-$  reduction dominated the total  $ClO_4^-$  removal in the reactor.

Two mechanisms may explain the strong inhibitory effect of NO<sub>3</sub><sup>-</sup> on ClO<sub>4</sub><sup>-</sup> reduction at higher NO<sub>3</sub><sup>-</sup>-N loadings. First, denitrification competed more strongly for H<sub>2</sub> as an electron donor than ClO<sub>4</sub><sup>-</sup> reduction. As shown in Table 3, H<sub>2</sub> consumption in stage 5 was close to the theoretical maximum delivery capacity of the membrane, suggesting limited H<sub>2</sub> availability. Incomplete ClO<sub>4</sub><sup>-</sup> removal (63%) and NO<sub>3</sub><sup>-</sup>-N removal (90%) provided further evidence of limited H<sub>2</sub> availability. Second, NO<sub>3</sub><sup>-</sup> may cause a longer lag in ClO<sub>4</sub><sup>-</sup> reduction (Tan et al., 2004), with ClO<sub>4</sub><sup>-</sup> reduction starting only after the complete removal of NO<sub>3</sub><sup>-</sup> because of the preferential NO<sub>3</sub><sup>-</sup> utilization by microorganisms. Consequently, NO<sub>3</sub><sup>-</sup> can suppress the ClO<sub>4</sub><sup>-</sup> reductase activity and thus inhibit ClO<sub>4</sub><sup>-</sup> removal. This inhibitory effect should increase with increasing NO<sub>3</sub><sup>-</sup>-N concentration in the reactor.

#### 4. Conclusions

 $ClO_4^-$  was reduced significantly at influent  $NO_3^-$ -N concentrations lower than 10 mg/L.  $NO_3^-$  promoted  $ClO_4^-$  reduction at ratios of  $NO_3^-$ -N to  $ClO_4^-$  lower than 5, but inhibited  $ClO_4^-$  reduction at ratios higher than 10. Denitrification used most of the electrons from H<sub>2</sub> oxidation, regardless of the biofilm H<sub>2</sub> availability. Higher  $NO_3^-$ -N loading generated insufficient H<sub>2</sub> in the biofilm, which shaped the biofilm community structure more strongly than the presence of  $NO_3^-$ -N. High-throughput sequencing showed that *Betaproteobacteria* were dominant in all stages, and *Methyloversatilis*, *Zoogloea*, *Citrobacter*, *Acinetobacter*, *Pseudomonas*, *Dechloromonas*, and *Azospira* were genera involved in simultaneous  $ClO_4^-$  reduction and denitrification. *Methyloversatilis* and *Zoogloea* play important roles in  $ClO_4^-$  reduction.

#### Acknowledgements

This work was supported by the National Natural Science Foundation of China (51878197, 51768012, 51708362, and 51678422), the Guangxi Natural Science Foundation (2016GXNSFAA380204 and 2016GXNSFBA380207), the Guangxi Science and Technology Planning Project (GuiKe-AD18126018), the National Key Research and Development Program of China (2017YFC0403403), and the Special Funding for Guangxi 'Bagui Scholars' Construction Project. We would like to thank LetPub (www.letpub.com) for providing linguistic assistance during the preparation of this manuscript.

#### Appendix A. Supplementary data

Supplementary data to this article can be found online at https://doi. org/10.1016/j.scitotenv.2019.07.370.

#### References

- Butler, C.S., Clauwaert, P., Green, S.J., Verstraete, W., Nerenberg, R., 2010. Bioelectrochemical perchlorate reduction in a microbial fuel cell. Environ. Sci. Technol. 44, 4685–4691.
- Cao, F., Jaunat, J., Sturchio, N., Cancès, B., Morvan, X., Devos, A., Barbin, V., Ollivier, P., 2019. Worldwide occurrence and origin of perchlorate ion in waters: a review. Sci. Total Environ. 661, 737–749.
- Cartier, T., Baert, A., Cabillic, P.J., Casellas, C., Creppy, E., Montiel, A., Pignatelli, B., Rosin, C., Sauvant-Rochat, M.P., Seux, R., Joyeux, M., 2012. Risk assessment of chemicals in drinking water: perchlorate and bromate. Environ. Risque. Sante 11 (4), 316–321.
- Cecconet, D., Callegari, A., Capodaglio, A.G., 2018. Bioelectrochemical systems for removal of selected metals and perchlorate from groundwater: a review. Energies 11 (10), 2643.

- Cecconet, D., Bolognesi, S., Callegari, A., Capodaglio, A.G., 2019. Controlled sequential biocathodic denitrification for contaminated groundwater bioremediation. Sci. Total Environ. 651, 3107–3116.
- Choi, H., Silverstein, J., 2008. Inhibition of perchlorate reduction by nitrate in a fixed biofilm reactor. J. Hazard. Mater. 159 (30), 440–445.
- Chung, J., Rittmann, B.E., 2007. Bio-reductive dechlorination of 1,1,1-trichloroethane and chloroform using a hydrogen based membrane biofilm reactor. Biotechnol. Bioeng. 97 (1), 52–60.
- Coates, J.D., Achenbach, L.A., 2004. Microbial perchlorate reduction: rocket-fuelled metabolism. Nat. Rev. Microbiol. 2 (7), 569–580.
- Downing, L.S., Nerenberg, R., 2007. Kinetics of microbial bromate reduction in a hydrogen-oxidizing, denitrifying biofilm reactor. Biotechnol. Bioeng. 98 (3), 543–550.
- Fabro, A.Y.R., Avila, J.G.P., Alberich, M.V.E., Sansores, S.A.C., Camargo-Valero, M.A., 2015. Spatial distribution of nitrate health risk associated with groundwater use as drinking water in Merida, Mexico. Appl. Geogr. 65, 49–57.
- Fan, A.M., Steinberg, V.E., 1996. Health implications of nitrate and nitrite in drinking water: an update on methemoglobinemia occurrence and reproductive and developmental toxicity. Regul. Toxicol. Pharma. 23, 35–43.
- Gao, M., Wang, S., Jin, C., She, Z., Zhao, C., Zhao, Y., Zhang, J., Ren, Y., 2015. Autotrophic perchlorate reduction kinetics of a microbial consortium using elemental sulfur as an electron donor. Environ. Sci. Pollut. Res. 22 (13), 9694–9703.
- Gao, M., Wang, S., Ren, Y., Jin, C., She, Z., Zhao, Y., Yang, S., Guo, L., Zhang, J., Li, Z., 2016. Simultaneous removal of perchlorate and nitrate in a combined reactor of sulfur autotrophy and electrochemical hydrogen autotrophy. Chem. Eng. J. 284, 1008–1016.
- Guan, X., Xie, Y., Wang, J., Wang, J., Liu, F., 2015. Electron donors and co-contaminants affect microbial community composition and activity in perchlorate degradation. Environ. Sci. Pollut. Res. 22 (8), 6057–6067.
- Herman, D.C., Frankenberger, W.T., 1999. Bacterial reduction of perchlorate and nitrate in water. J. Environ. Qual. 28 (3), 1018–1024.
- Hutchison, J.M., Guest, J.S., Zilles, J.L., 2017. Evaluating the development of biocatalytic technology for the targeted removal of perchlorate from drinking water. Environ. Sci. Technol. 51 (12), 7178–7186.
- Kimbrough, D.E., Parekh, P., 2007. Occurrence and co-occurrence of perchlorate and nitrate in California drinking water sources. J. Am. Water Works Ass. 99 (9), 126–132.
- Lai, C.Y., Yang, X., Tang, Y., Rittmann, B.E., Zhao, H., 2014. Nitrate shaped the selenatereducing microbial community in a hydrogen-based biofilm reactor. Environ. Sci. Technol. 48 (6), 3395–3402.
- Lee, K.C., Rittmann, B.E., 2003. Effects of pH and precipitation on autohydrogenotrophic denitrification using the hollow-fiber membrane-biofilm reactor. Water Res. 37, 1551–1556.
- Li, X., Upadhyaya, G., Yuen, W., Brown, J., Morgenroth, E., Raskin, L., 2010. Changes in the structure and function of microbial communities in drinking water treatment bioreactors upon addition of phosphorus. Appl. Environ. Microb. 76 (22), 7473–7481.
- Li, H., Zhou, L., Lin, H., Xu, X., Jia, R., Xia, S., 2018. Dynamic response of biofilm microbial ecology to para-chloronitrobenzene biodegradation in a hydrogen-based, denitrifying and sulfate-reducing membrane biofilm reactor. Sci. Total Environ. 643, 842–849.
- Logan, B.E., 2001. Assessing the outlook for perchlorate remediation. Environ. Sci. Technol. 35 (23), 482A–487A.
- Logan, B.E., Lapoint, D., 2002. Treatment of perchlorate and nitrate-contaminated groundwater in an autotrophic, gas phase, packed-bed bioreactor. Water Res. 36 (14), 3647–3653.
- London, M.R., De Long, S.K., Strahota, M.D., Katz, L.E., Speitel, G.E., 2011. Autohydrogenotrophic perchlorate reduction kinetics of a microbial consortium in the presence and absence of nitrate. Water Res. 45 (19), 6593–6601.
- Nerenberg, R., Martin, K.J., 2012. The membrane biofilm reactor (MBfR) for water and wastewater treatment: principles, applications, and recent developments. Bioresour. Technol. 122 (S1), 83–94.
- Nerenberg, R., Rittmann, B.E., 2004. Hydrogen-based, hollowfiber membrane biofilm reactor for reduction of perchlorate and other oxidized contaminants. Water Sci. Technol. 49, 223–230.
- Okeke, B.C., Giblin, T., Frankenberger, W.T., 2002. Reduction of perchlorate an nitrate by salt tolerant bacteria. Environ. Pollut. 118 (3), 357–363.
- Ontiveros-Valencia, A., Zhou, C., Ilhan, Z.E., Cyr, L.C.D.S., Krajmalnik-Brown, R., Rittmann, B.E., 2017. Total electron acceptor loading and composition affect hexavalent uranium reduction and microbial community structure in a membrane biofilm reactor. Water Res. 125, 341–349.
- Puig, S., Serra, M., Vilar-Sanz, A., Cabre, M., Baneras, L., Colprim, J., 2011. Autotrophic nitrite removal in the cathode of microbial fuel cells. Bioresour. Technol. 102, 4462–4467.
- Rittmann, B.E., McCarty, P.L., 2001. Environmental Biotechnology: Principles and Applications. McGraw-Hill Book Co, New York.
- Roldan, M.D., Reyes, F., Morenovivian, C., Castillo, F., 1994. Chlorate and nitrate reduction in the phototrophic bacteria Rhodobacter capsulatus and Rhodobacter sphaeroides. Curr. Microbiol. 29 (4), 241–245.
- Sabba, F., Picioreanu, C., Perez, J., Nerenberg, R., 2015. Hydroxylamine diffusion can enhance N<sub>2</sub>O emissions in nitrifying biofilms: a modeling study. Environ. Sci. Technol. 49, 1486–1494.
- Sabba, F., Picioreanu, C., Boltz, J.P., Nerenberg, R., 2017. Predicting N<sub>2</sub>O emissions from nitrifying and denitrifying biofilms: a modeling study. Water Sci. Technol. 75, 530–538.
- Scheytt, T.J., Freywald, J., Ptacek, C.J., 2011. Study of selected soil, ground, and surface water samples on perchlorate in Germany: first results. Grundwasser 16 (1), 37–43.
- Sevdaa, S., Sreekishnanb, T.R., Pousc, N., Puigc, S., Pantd, D., 2018. Bioelectroremediation of perchlorate and nitrate contaminated water: a review. Bioresour. Technol. 255, 331–339.

- Shea, C., Clauwaert, P., Verstraete, W., Nerenberg, R., 2008. Adapting a denitrifying biocathode for perchlorate reduction. Water Sci. Technol. 58, 1941–1946.
- Sun, Y., Shen, D., Zhou, X., Shi, N., Tian, Y., 2016. Microbial diversity and community structure of denitrifying biological filters operated with different carbon sources. Springer Plus 5. 1752.
- Tan, K., Anderson, T.A., Jackson, W.A., 2004. Degradation kinetics of perchlorate in sediments and soils. Water Air Soil Pollu 151 (1–4), 245–259.
- Tang, Y., Zhao, H., Marcus, A.K., Krajmalnik-Brown, R., Rittmann, B.E., 2012a. A steadystate biofilm model for simultaneous reduction of nitrate and perchlorate, part 2: parameter optimization and results and discussion. Environ. Sci. Technol. 46 (3), 1608–1615.
- Tang, Y., Zhou, C., Van Ginkel, S.W., Ontiveros-Valencia, A., Shin, J., Rittmann, B.E., 2012b. Hydrogen permeability of the hollow fibers used in H<sub>2</sub>-based membrane biofilm reactors. J. Membrane Sci. 407–408 (s407–408), 176–183.
- U.S. EPA, 2011. Fact Sheet, Final Regulatory Determination for Perchlorate. https://www.epa.gov/sites/production/files/2015-08/documents/epa815f11003.pdf.
- Van Ginkel, S.W., Ahn, C.H., Badruzzaman, M., Robert, D.J., Lehman, G., Adham, S.S., Rittmann, B.E., 2008. Kinetics of nitrate and perchlorate reduction in ion-exchange brine using the membrane biofilm reactor (MBfR). Water Res. 42 (15), 4197–4205.
- Vasiliadou, I.A., Pavlou, S., Vayenas, D.V., 2006. A kinetic study of hydrogenotrophic denitrification. Process Biochem. 41, 1401–1408.
- Wan, D., Liu, Y., Wang, Y., Wang, H., Xiao, S., 2017. Simultaneous bio-autotrophic reduction of perchlorate and nitrate in a sulfur packed bed reactor: kinetics and bacterial community structure. Water Res. 108, 280–292.
- Xia, S., Zhang, Y., Zhong, F., 2009. A continuous stirred hydrogen-based polyvinyl chloride membrane biofilm reactor for the treatment of nitrate contaminated drinking water. Bioresour. Technol. 100, 6223–6228.
- Xia, S., Li, H., Zhang, Z., Zhang, Y., Yang, X., Jia, R., Xie, K., Xu, X., 2011. Bioreduction of parachloronitrobenzene in drinking water using a continuous stirred hydrogen-based hollow fiber membrane biofilm reactor. J. Hazard. Mater. 192 (2), 593–598.
- Xia, S., Wang, C., Xu, X., Tang, Y., Wang, Z., Gu, Z., Zhou, Y., 2015. Bioreduction of nitrate in a hydrogen-based membrane biofilm reactor using CO<sub>2</sub> for pH control and as carbon source. Chem. Eng. J. 276, 59–64.

- Xia, S., Xu, X., Zhou, C., Wang, C., Zhou, L., Rittmann, B.E., 2016. Direct delivery of CO<sub>2</sub> into a hydrogen-based membrane biofilm reactor and model development. Chem. Eng. J. 290, 154–160.
- Xu, J., Trimble, J.J., Steinberg, L., Logan, B.E., 2004. Chlorate and nitrate reduction pathways are separately induced in the perchlorate-respiring bacterium Dechlorosoma sp. KJ and the chlorate-respiring bacterium Pseudomonas sp. PDA. Water Res. 38 (3), 673–680.
- Ye, L, You, H., Yao, J., Su, H.L., 2012. Water treatment technologies for perchlorate: a review. Desalination 298, 1–12.
- Zhang, Y., Zhong, F., Xia, S., Wang, X., Li, J., 2009. Autohydrogenotrophic denitrification of drinking water using a polyvinyl chloride hollow fiber membrane biofilm reactor. J. Hazard. Mater. 170 (1), 203–209.
- Zhao, H., Van Ginkel, S.W., Tang, Y., Kang, D.W., Rittmann, B.E., Krajmalnik-Brown, R., 2011. Interactions between perchlorate and nitrate reductions in the biofilm of a hydrogen-based membrane biofilm reactor. Environ. Sci. Technol. 45 (23), 10155–10162.
- Zhao, H., Ontiveros-Valencia, A., Tang, Y., Kim, B.O., Ilhan, Z.E., Krajmalnik-Brown, R., Rittmann, B., 2013. Using a two-stage hydrogen-based membrane biofilm reactor (MBfR) to achieve complete perchlorate reduction in the presence of nitrate and sulfate. Environ. Sci. Technol. 47 (3), 1565–1572.
- Zhou, C., Ontiveros-Valencia, A., Cyr, L.C.D.S., Zevin, A.S., Carey, S.E., Krajmalnik-Brown, R., Rittmann, B.E., 2014. Uranium removal and microbial community in a H2-based membrane biofilm reactor. Water Res. 64 (22), 255–264.
- Zhou, C., Ontiveros-Valencia, A., Wang, Z., Maldonado, J., Zhao, H., Krajmalnik-Brown, R., Rittmann, B.E., 2016. Palladium recovery in a H2-based membrane biofilm reactor: formation of Pd(0) nanoparticles through enzymatic and autocatalytic reductions. Environ. Sci. Technol. 50 (5), 2546–2555.
- Zhu, Y., Wu, M., Gao, N., Chu, W., Wang, S., 2016. Impacts of nitrate and electron donor on perchlorate reduction and microbial community composition in a biologically activated carbon reactor. Chemosphere 165, 134–143.